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RESEARCH MEMORANDUM

FLIGHT MEASUREMENTS OF THE LATERAL STABILITY
AND CONTROIL CHARACTERISTICS OF A
HIGH-SPEED FIGHTER AIRPLANE

By H. L. Crane, A. R. Beckhardt, and C. E. Matheny
SUMMARY

This paper presente the results of a brief flight investigation
of the lateral stability and control characteristics of a high-speed
fighter airplane. The tests reported herein were intended to be pre-
liminary to a flight investigation to measure the latersl-stabllity
derivatives. The variation of rudder and alleron deflection, pedal
force, and lateral-force coefficient with angle of sideslip are pre-
gsented for Mach numbers up to 0.815 at an altitude of 10,000 feet and
for Mach numbers up to 0.84% at an altitude of 30,000 feet. Values of
the rate of change of lateral-force coefficient with angle of sideslip
determined from the flight tests and corrected for the rudder deflec-
tion required for trim agreed with wind-tunnel results. Brief measure-
ments of the damping of the controls-free latersl osclllations showed
that the cycles to damp to half amplitude varied from spproximately 1.6
to 2.1 at an altitude of 10,000 feet and from 2.6 to 3.6 at 30,000 feet.
It was found that the rudder tended to float against the relative wind
for small angles of sideslip and that this airplane was an example of
one in which at least part of the unsatisfactory lateral dasmping char-
acteristics appeared to be due to rudder snaking. Correlation between
measured damping of the controls-free lateral oscillation and calculated
demping of the controls-fixed lateral oscillation appeared to be good when
allowance was made by an approximate method for the effect of the rud-
der motion. The evidence of agreement shown by the method of compari-
son used in the analysis does not necessarily indicate that all the
stabllity derivetlves and mass characteristics assumed in the theoret-
ical analysis are correct, however, since there is the possibility of
compensating errors.
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INTRODUCTION

The Flight Research Division of-the NACA 1s conducting an investi-
gatlion of the dynamic lateral stebllity characteristics of several
modern, high-speed slrcraft. One phase of this investigation is con-
cerned with the measurement in flight of the lateral-stability deriva-
tilves of representative modern fighter alrcraft. The present paper
dlscusses preliminsry results of a flight investigation of the lateral
stabllity characteristics of one fighter airplane.

At the initiation of the test program 1t was decided to make several
flights to investlgate .the general lateral handling gualities of the test
aircraft. It was felt that these tests, made mostly at high subsonic
speeds, were a logical starting point preceding the actual measurement of
the lateral-stability derivatives of the test airplane.

During the course of the service acceptance trials, many of the
handling qualities of this alrplane were measured in the stabllity and
control phase of the tests. The service tests included an evaluation
of the handling qualitles and sufficient quantitative data were obtained
to ‘demonstraté compliance with the requirements of SR-119B (reference 1).
The tests reported herein were made to permit a more thorough analysis of
several phases of the lateral handling qualities.

Because the actusl measurement of stability derivatives has not
yet been obtained, this paper is preliminary in nature and includes only
the test data of interest obtained to date.

DESCRIPTION OF AIRPLANE

The test airplane was a single-place, two-engine, Jet=propelled
fighter with an unswept low wing and a conventional tall configuration.
Stressed metal skin construction is utilized throughout with all lifting
surfaces being of the full cantilever type. The &irplane is  equipped
with split flaps and speed brekes. There are trim tabs on all control
surfaces. A three~view drawing of the test airplane is shown in figure 1
end the genersl specifications of the airplane are tabuleted in table I.
The test asirplane was modified by the removal of the smmunition cases
and one of the 20-millimeter guns to provide space for the instrumen-
tation necessary for the tests. The test alrplane had a gross weight
of 15,956 pounds with full service, pilot, and loaded instruments with
the center of gravity located at -25.5 percent of the mean serodynamic
chord.
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The aileron control system of the teat alrplane is a push-pull rod
system with two completely independent hydraulic boost systems, one on
_each aileron. A bench mock-up of the sileron boost system was constructed
of spare psrts to provide a test facility for the observance of the
operating characteristics of a typical service booster system. During
these tests the static boost ratio of the asileron control system was
measured and the results are shown in flgure 2. The static boost ratio
was determined to be approximstely 40:1 with a break-out force of approx-
imately 3 pounds. Additional informastion on the alrplane's control-
gystem characteristics is given in table I.

INSTRUMENTATION

Standerd NACA recording instruments were used to measure the fol-
lowing quantities: 1indicated airspeed, pressure altitude, control
positions, control forces, sideslip angle, angle of attack, angular
velocities, angular accelerations, and the normal, transverse, and
longitudinal accelerations. These quantities were measured with respect
to the body axes. It should be noted that the lateral accelerstion was
measured in the cockpit approximately 6 feet ahead of the center of
gravity and was not corrected for the effect of this displacement. The
ailrspeed and altitude measurements were made with a Kollsman high-speed
pitot-static tube mounted spproximately 1 chord zhead of the right wing
tip. Callbration of similar ingtallations has indicated that this type
of installation would probably have a position error in the static
pressure of less than one-half of 1 percent throughout the test speed
range. Alrspeed as used 1n this paper 1s indicated alrspeed and is not
corrected for position error. The recording sideslip vane and angle-
of-attack vane were mounted on a boom gpproximately one maximum fuse-
lage diameter ahead of the nose.

SYMBOLS
g angle of sideslip, degrees
S, rudder deflection, degrees ]
Sro _ ~amplitude of rudder oscillation, degrees
Bq alleron deflection, degrees
RP . ;udder predal force, poun@s
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lateral -force coefficient.

rate of change- of latersl~force coefficlent with angle .
of sidesllip, per—radian

rate of change of latersl-force coefficlent with rudder
‘deflection, per degree

1ift coefficient
logarithmic decrement of lateral oscillation
period of lateral oscillation, seconds

time to demp to one-half amplitude, seconds

_cycles to damp to one-half amplitude . .

work, foot-pounds
Yyewing moment due to rudder deflection, foot-pounds per

degree- <éN qﬁé) N
5 .
T

yvawlng-moment coefficlent —

rate of change of yawing-moment coefficient with rudder
deflection, per degree

dynamic pressure, pounds per square foot

wing area, square feet

wing span, feet

Mach number

angle of bank, degrees -

angle of yaw, degrees

amplitude of yawing oscillation, degrees

phase angle between rudder deflection and angle of yaw

moment of inertia about z-axis, slug-feet2
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AHKE increment of kinetlc energy, foot-pounds

Cn . hinge-moment coefficient

Cha _ rate of change of hinge-moment coefficlent with control
deflection, per degree

Ch " rate of change of hinge-moment coefficient with angle of

¥ yaw, per degree

Chm rate of change of hinge-moment coefficient with angle of
attack, per degree

pb/2V flight-path helix angle, radians

D _ rolling angular veloclty, radisns per second

v true airspeed, feet per second

Vi inq;qated a;rspeed, miles per hour or knots

Ve equivalent airspeed, mlles per hour or knots as defined
in reference 2

w angular frequency of periodic function, radilans per
second

RESULTS AND DISCUSSION

Control-free lateral oscillations.- The damping end period measured
at several Mach nmumbers and altitudes ie superposed on the criterion
of SR-119B in figure 3 and indicates that, with the controle free, the
demping of the test alrplane was marginally unsstisfactory wlth respect
to meeting the handling-qualities requirements at 10,000 feet altitude
and definitely unsatisfactory at 30,000 feet altitude. These tests were
made in the clean condition with power for level flight. The oscillations
were 1lnitiated by releasing the alrplane from steady sideslips. Typical
time histories of the lateral oscillatlons are presented in figure L.
Figures L4(a) and 4(b) present all the measured quantities while
figure 4(c) presents a photographic copy of the records of some of the
more important parameters to show them in more detail.

The characteristics of the demping of the leteral oaclllation of
the test airplane are shown in figure 5 in another form. This figure
is an example (not taken from fig. 4(c)) of the logarithmic varistion

S
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of the double amplitude of the yawing velocity with time. In several
runs a nonlinear logarithmic varistion of amplitude with time was
obtained. Such a nonlinear varlation can be taused by slight—roughness
in the alr, but in some cases records of this type were obtained in
apparently smooth air. This type of nonlinear varlation when messured
in smooth elr could be caused by small aileron or rudder motions or by
nonlinear stablllity derivatives. Figure 5 1s an example of the decrease
in demping at small amplitudes obtalned during & run in apparently
smooth air.

The deta of figure 3 have been replotted in figure 6 in terms of
the logarithmic decrement of the lateral oscillation to indicate the
variation of the damping with Mach number. The logerithmic decrement
is obtained from the slope of the linear portion of the curve in log-
aritimic plots, such as flgure 5, and is the log, of the ratio of

succegsive peak amplitudes during a lateral oecillation. . The logerith-
mic decremeént d 1s related to the time to damp to half amplitude by
the following relationship:

4 = 0.693P _ 0.693
Tie C1/e
As-1indicated 1n figure 6 the value of the logarlithmic decrement was

approximately 0.42 at M = 0.35, 0.34 at M = 0.50, and 0.35 at M = 0.70
for an altitude of 10, 000 feet.

Also plotted in figure 6 are the results of some analytical cal-
culations of the demping for the test—zlrplane. These calculated
values of demping of the lateral osclllation were based on inertia
values supplied by the manufacturer corrected for fuel consumptlion and
instrumentation, and stability derivatives estimated by the methods of
references 3 and 4. These controls-fixed calculations indicate a
higher degree of damping than was measured with controls free.

Examination of the time history presented in figure 4(c) indicates
that the rudder has a tendency to float against the relative wind
(increasing right sideslip resulting in increasing right rudder deflec-
tion) over the range of tail angles of attack encountered in these maneu-
vers. The rudder deflection lagged the. angle of yaw by about 20° with
the result that there was a tendency to feed energy intc the oscillation.
This type of controls-free lateral oscillation is an example of rudder
snaking, but in this case the influence of the rudder is sufficient only
to reduce the damping of the Dutch roll oscillaetion rather than to pro-
duce a constant amplitude motion.
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Since the flight test data indicated that the position of the
rudder was not constant during the lateral oscillations, an estimate

was made of the magnitude of the effect that rudder motion would have
on the computed logarithmic decremerit. The work done per cycle by a
hermonically verylng force upon a harmonic motion of the same frequency
in & system assumed to have one degree of freedom. can be written as

W = w0, Ng ¥, sin @ (1)

where, for the case under consideration,

SroN emplitude of yawing moment due to rudder motion
8. (C,. aSb c obtained from wind-tunnel data
o (3} na.
¥ amplitude of yawing displacement (obtesined from yawing-
° velocity recorder)
é - phase angle between forclng function ar and displasce-
ment ¥

In this anslysis 1t was necessary to assume that for the cycle con-
gidered the szlrplene and rudder were oscilleting at & constent ampli-
tude equal to the average of successive maximum (positive) and minimum
(negative) amplitudes. .

The work per cycle due to the rudder osclllaetion wae then compared
to the loss In kinetic energy per cycle which can be computed from the
followling relationship:

I I
o = 2fy? v D)2 = o 2 fr:2 - v (2)

in which wl and We represent the maximum yaw angles at corresponding

points on two successive cycles. For example, it can be determined
from the time history of figure 4(c) that the rudder is oscillating in
the cycle indicated with an average.smplitude of approximately 0.27°
and the alrplane is oscillating in yaw with an average amplitude of
approximately 1.20°. The phase angle between the rudder displacement
and the alrplane yawing displacement is approximately 20° with the
rudder lagging. The work per cycle for thls example 1s then

W= n[(-o.m)(-o.ooin)(281)(29u.1)(41.7uﬂ ;;{23 sin 20° = 29 foob-pounds
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The loss in kinetic energy for this €xsmple is approximately

AKE = 25° 38,000 ) ) = 65 foot-pounds
(1.70)2 57 3 57 3

The work input from the rudder motion and the loss 1n kilnetic
energy lnvolve a gross energy of approximately 94 foot-pounds in this
example. Recomputling the value of Vo from equation (2) for this

energy change glves an adjusted value of YV, for the controls-fixed

case of approximately 0.7T4°. The log decrement is correspondingly
sdjusted from the value of 0.334 at M =0.51 in figure 6 to

d = logg é'?i = 0.58 which 1s in good agreement with the controls-fixed

calculated value of 0.60. This good agreement was obtalned on four
different runs but the aspparent sgreement should be viewed with caution
not only 1n view of .the assumptions made inm correcting the measured log
decrements but in view of the fact that the calculated values may be

in error due to errors in the asssumed mass characterlstlcs or in the
values of the stablllity derlvatives used in the calculations.

It would be desiraeble to continue this phase of the investigation
and to measure the damping cherecteristics throughout the altitude and -
Machk number range of the test alrcraft wlth the control surfaces fixed.

Sideslip charscteristics.- The sideslip data which gave measurements
of directionsl stebility (variastion of rudder angle and force with
sideslip angle), dlhedral effect (variation of alleron angle and force
with sideslip angle), and the side-force characteristics (variation of
angle of bank with angle of sideslip) are shown in figures 7 and 8.

The data are presented for the two test altitudes of spproximately

10,000 and 30,000 feet for a Mach number range from 0.20 to 0.84., The
data of figure 7 were obtained during continuous gradually increasing
sideslips to the right and to the left. The rate of change of sideslip
was gt approximstely 1/2O per second. The date of figure 8 were obtalned
during steady sideslips.

The directional stebility as indicated by the curves of rudder
angle and force wdag always poaitive. The directional-stability param-
eter 05 f and the directlonsl-force characteristics as measured

by BFP 38 messured through zero sideslip are plotted against Mach

number for the two test altitudes in figure 9{a). In preparing-
figure 9 the steady sldeslip data of figure 8_as well as the results
of the gradually increasing sidesliips of figure 7 were used. At
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10,000 feet, the parameter Bﬁq/ée increased from about 1.2 at low

speeds to sbout 2.4 at a Mach number of 0.7%. Further increase in
Mach number to 0.82 resulted in a decrease in BSr/BB to about 1.8.

At 30,000 feet, BSr/BB was approximately 1.3 and essentlally constant

up to a Mach number of 0.70. From a Mach number of 0.70 to 0.8L4,
a&r/BB increased slightly and then decreased to a value of about 1.3

again. Rudder deflection was determined from the position of a control
pushrod in the sfter portion of the fuselage and was therefore affected
by twist of the rudder or distortion of the linkage. Because of the
large difference in dynamic pressure for the two test altitudes at a
given Mach number, it seemed likely that the differences between the
values of Bﬁr/BB measured st 10,000 feet and at 30,000 feet were due

in large measure to distortion in the rudder control system and air-
frame. Filgure 9(b) which is a plot of the perameters of figure 9(a)}
against dynamic pressure bears out this theory. Below the point where
Mech number effects are evident the curves are spproximately lineasr and
the values aspproximately equal for the two altitudes.

The dihedrel effect as measured by the varistion of aileron angle
with sldeslip which is also presented in figure 9 wes approximately
constant up to & Mach number of 0.80 where the sharp increase in 38%/36

indicates an increase in the rolling moment due to sideslip and/or a
decrease in alleron effectlveness. There is a nonlineasrity or offset
near zero sideslip in the varistion of alleron deflectlion with angle

of slideslip for the gradually increasing sidesllp data of figure 7.

This offset is probably due to the alleron deflectlon necessary to
produce the slow rolling wvelocity in the gradually increasing sideslips.
The values of Bﬁa/aﬁ were therefore measured at lesrge enough sideslip

angles so that the measured slope was not dependent on the feiring in
the region of the offset. It was felt that the slopes measured in this
manner would be more representative of the characteristics of the alr-
plane. ' '

At the lower test Mach numbers the variation of elevator position
and control force with angle of sideslip was small. However, at Mach
mumbers sbove spproximately 0.8 the variation of elevator contrel force
with sldeslip became erratic with sbrupt changes of as much as 20 pounds.

The angle of bank was slways in the same dlrection as the angle of
gideslip. The angle of bank required to hold a steady sideslip was

generally small at low speeds (g.z O.5). Because the slde force for =a

given sideslip angle veries approximately as the dynemic pressure, the
angles of bank required lncreased rapidly at the higher test speeds.
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In wind-tunnel tesgts the side~force derivative CYB is measured

by yawling the model with the rudder in neutrsl. In flight the pilot
must deflect the rudder to produce a steady sldeslip and therefore CYB

cannot be mezsured directly. To obtaln a comparison of wind-tunnel and
flight measurements of side-force characteristics, the values of the
slde-force derivative measured in flight were corrected for the slde
force .due to rudder deflectlon by using wind-tunnel data to obtain
values of---CYS . The variation of the side-force derivative CYB

r
with Mach number sg computed from the variation of angle of bank with
sidesllip angle in sideslips is presented 1n figure 10. The value of the
side~-force derivative with rudder deflected for trim is also plotted
in figure 10, )

The gide-force derivative CYB was essentlially constant with

increasing Mech number up to & Mach number of 0.75. At low Mach npum-
bers CYB was approximately -0.63 incressing to about -0.T70 at & Mach

number of 0.75. From M = 0.75 +to 0.84, Cy decreased to a value
B
of ebout -0.48. The values of CY obtained from the flight test data

are 1In good agreement with the values measured in wind-tunnel tests as
shown in figure 10.

Rudder control characteristicse.- The-rudder control characteristics
measured in abrupt rudder kicks are shown in figure 11l. At 10,000 feet,
V,; & 240 miles per hour, g sideslip angle-of about 20° resulted from

an abrupt meximum rudder deflection of about 17°. At 30,000 feet,
% 335 miles per hour, a maximum sideslip angle of-about 8° resulted

from a rudder deflection of about 6° which was limited to this value by
the large control force required. ' As shown in figure ll(a), no appre-
clable difference-in the rudder control cheracteristics was noted at
landing speeds between the clean condiftlon and the landing condition.
Left rudder force was always required.for left-rudder deflections and
right rudder force for right rudder deflection. No reversal of rudder
forces ever occurred. :

Rudder hinge-moment characteristics.- The rudder hinge-moment
characteristics measured in abrupt rudder kicks are presented in
figure 12. The data were calculated from time histories of rudder kicks
made at both 10,000 end 30,000 feet from M =0.20 to M = 0.77.

The variastion of hinge moment due to rudder deflection as a function
of rudder deflection presented in figure le(a), which was obtalned from
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the initisl portions of the step maneuvers during which the sideslip
angle was essentially constant, is linear up to a rudder deflection of
about *10°. The slope Ch8 is -0.0113 through this range of rudder

deflection. For rudder deflections sbove 10° a possible increase in Cha
is indicated by the data of figure 12(a).

The hinge moment due to change in sideslip alone was determined from
the second portion of the rudder-kick time histories during which the
rudder deflection was held constant while the sideslip gradually increased.
A correction was applied for any inadvertent motion of the rudder. As
noted in the sectlon on control-free lateral oscillations, there was
evidence during several of the lateral osclllations of a tendency for
the rudder to float against the relative wind. This occurrence would
indicate a negative value for ChB, which can be considered approximately

equivalent to a positive value of Chm if the sidewash 18 considered

to be small, at small angles of sideslip g 2:50 . To assist in the
fairing at small angles of sideslip of the turve ‘'of hinge-moment coef-
ficient against sideslip, shown in figure 12(b), values of the variation
of Ch with B were calculated from the ratio of rudder trailing angle

to sldeslip angle 1n rudder-free lateral osclllations. It was found
that the maximum value of C, caused by the tendency to float against

the relative wind was spproximately 0.00k at 2° or 3° or sideslip.

Rolling characteristics.- The variation of rolling effectiveness
with alleron deflection (boost on) at the test altitudes of 10,000 and
30,000 feet is presented in figure 13. Within the capabillity of the
booster the required control force and the change in rolling velocity
obtained in gbrupt rudder-fixed aileron rolls from wings rlevel flight
varied smoothly wlith aileron deflection throughout the Mach number range
tested. The pllot did not conslder the 2- or 3-pound breakout force
to be objectionable. It should be noted that the abrupt increase in con-
trol force occurs when the capaebility of the aileron booster is exceeded.
The rolling effectiveness with the flaps snd gear down was checked at
5,000 feet (fig. 13{c)) and the characteristics were found to be
satisfactory.

The variation of the alleron rolling-effectiveness parameter pb/EV,
as limited by full zlleron deflection or 30-pound control force (boost
on), with airspeed is presented in figure 1k. Figure 14 also shows the
corresponding varlatlon of rolling velocity, control force, and total
aileron deflection. The rolling performance of the test alrplane exceeds
the requirements of SR-119B up to approximately 315 knots CVi) at the

test altitude of 10,000 feet. From 315 knots to 410 knots, the helix
angle obtained decreases from about 0.09 to 0.06. Although the rolling
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requirements at 30,000 feet are not specified, the test alirplane sat-
isfied the low-altitude requirements up to an indicated airspeed of
approximately 200 knots. From 200 knots to the maximum test speed of
approximately 275 knots the rolling effectiveness parameter pb/2V for
a 30-pound aileron control force decreased from about 0.09 to 0.0T.

CONCLUSIONS

The following conclusions may be drawn from the present flight
investigation of the lateral stability and control characteristics of
a high-speed fighter sirplane reported hereln:

1. The damping of the controls-free latersel oscillation of the
test airplane was marginal and did not meet the requirements of SR-119B.
The cycles to damp to half amplitude varied from spproximetely 1.6 to 2.1
at an altitude of 10,000 feet and from 2.6 to 3.6 at 30,000 feet. There
was evidence (for sideslip angles less thean 5°) of a positive value of
Chm’ the hinge-moment coefficlent due to angle of attack, which corre-

sponds to a tendency for the rudder to float ageinst the relative wind.
Thig airplene is an example of-—one in which at least part of the unsat-
isfactory lateral damping characteristics appears to be due to rudder
snaking,

2. The directional stability of the test airplane was always
positive.

3. The dihedral effect as indlcated by the parameter Bsa/BB was

positive and essentially constant up to Mach number of 0.80 above which
a&a/BB increased abruptly.

4, The side-force derivative CYB was approximately constant

with increasing Mach number up to M = 0.75. From M = 0.75 to M = 0.8k,
CYB decreased from about -0.70 to about -0.48. The values of CYB

derived from the Flight test dats are in good agreement with wind-tunnel
values. : L '

5. The value of Chs’ the hinge-moment coefficlent due to rudder

deflection, was linéar up to a rudder deflectilon of approximately +10°©
and was equal to spproximately -0.0113 w™h an unbalancing tab ratio
of 1.h4:1. '

6. The rolling performance of the test airplane exceeds the require-
ments of SR-119B with the aileron boost on &t 10,000 feet up to

Uassameanny
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approximately 315 knots. From 315 knots to 410 knots there is a decresse

in rolling performance as indicated by the decrease in helix angle from
0.09 to 0.06.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Langley Field, Va.
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GENERAL SPECIFICATIONS OF THE AIRPLANE

Engines:

TYPe « ¢« o« ¢ o o « o o . « ¢« « « Westinghouse

Normel static thrust at sea level 1 . .
Rated normal, rpm . . & « « o ¢ « ¢ & o &

Wing:
Total area, sg £t . . . « o ¢« ¢ ¢« « o« o W
Span, £t . . . . . . . « e e e e e e
Mean aerodynamic chord ft e e e s o e s
Aspect ratio . . . . e e s s e & s e e e

Taper ratlo . ¢« ¢ v ¢ i ¢ ¢ 6 o6 & o o o

Root chord, f£ . .« « ¢ ¢ ¢« ¢ ¢ v « ¢« &+ ¢ &

Tip chord, ft . « « .« « ¢« ¢« ¢« o« « o. 0 s.

Incidence to fuselage reference }

line, deg .+ ¢ v ¢« & v 4 e 4 e e e e s
Twlst, deg « « ¢« ¢ v ¢ v ¢ ¢ & ¢ o o o o« &
Dihedral, deg . . . « ¢ « o &« & o ¢ « « &

Sweepback of lesading edge, deg . . . . . i

Alrfoll root section . . . « . ¢« « « « .+ .
Alrfoll tip section . &« ¢« ¢ ¢ ¢« ¢ o & o &

Aileron:

Type of aileron . . . .. « . . .. . . Plain

Area aft of hinge line,

each, sg ft . . , . ¢ ¢ ¢ ¢ & ¢ & « & .
Span, ££ . . « « « ¢ 00 e 0 e e e s e e
Travel, deg . & +v ¢ o« o ¢ ¢ ¢« « o o o o
Balance tab area, aq £t « . « '« + 4 . .
Balance tab movement, (ratic adjustable

from O to 1:1) deflection used, deg . .
Trim teb area, sq ft . . . . . . . . . . .
Trim tab movement, deg . . . . . . . . « .
Control stick movement deg . . « ¢ & .

Control stick length to center of grip, ftum

Flaps: . : -
Total area aft of hinge line, sq ft . o
Flap deflection, deg . « + « ¢ & ¢« « & «
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TABLE I
GENERAL SPECIFICATIONS OF THE ATRPLANE - Concluded

Horizontal tsil:
Total ared, 8Q Tt .« « «o « 2 o « o & o o o a o o« o« o o o o « o » 69.87
Span, £t . ¢ v 4 4t s et e e e e s e s e e e s s e e s s . . 18,03
Mean aserodynamic chord Tt 6 6 6 e a6 e ¢ o o ¢ o o e 4 o s e 3.95
L.65
0.60

Aspect ratio . . 4 e i i i i e e e s e e e e 6 s s s e e s 8 e .
Taper rabio + ¢ & & o ¢ o o ¢ o o o ¢ o o s e o o « o s e o s . .
Incidence, deg . . . . . o pp |
Dihedral of chord plane, deg e o e & 4 & s o 8 o o o o a . . .0

Section.........................NACA65-Oll
Type of elevator . . . . . . . .« . « . Plain flap, 30 percent chord
Elevator rocot mean square chord, ft e o o 4 o o s & & s« « o 1.135
Elevator area aft of hinge line, total B FL « ¢ v ¢ 4 . . . . 1T.66 .
Elevator 8pan, £L . « « +« v ¢ « o« ¢ ¢ « o o = « « o o « « « o + T.85
Elevator travel, 8 "+ « + o « « 2 o ¢ o & o o« « o« o o . . £12, 218
Trim teb area, 8 ft . . . . ¢ 4 ¢ 4 4 4 e s 4 e o s e e . . 0.T6
Trim teb movement, @eg . . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o e s 2 s s s e s s 220
Spring teb erea, 8 £ . . . . 4 4 4 cie 4 e e e e e . .. . . 1013
Spring teb movement, deg . e e o & o 4 s+ & s « « o s« s+ e« o« «*F30
Tail length from leading edge of wing to 25-percent

M.A.C. of horizontal tail, f£ . . . & « « « « o « « « « - - . 18.77
Control stick movement for full . . .

elevator deflection, deg . « + « « « « « « « « » « » =13.4%, +18.6
Control stick length to center of grip, f+ . . . . . . . . . . . 1.9

Vertical tail:

AreB, 8Q FE & ¢ « « 4 4 4 e s 4 4 & s e e 4 4 s e 4 e o« . . . 38.36
Span, £t . . . 4 i s e e h e e e s e s e e e e e e e s e e e« TJIT-
BBPECE TALIO + v 4 ¢ 4 4 4 4 4 e e e e e e e e e e e s e s o« . 1,34
Section . . i . . . . e« <« s <« « « « NACA 65-011
Tail length from leading edge of wing .

" to 25-percent, M.A.C. of vertical tail, FE @ @ o s o o o . . . 18,96
Rudder area, 8q Tt .« + o« ¢ ¢ ¢ & « o ¢ ¢ ¢« o 2 o o = 2 &« &« « « 10.13
Rudder span, £t . . « ¢ & v ¢ ¢ 4o ¢ ¢ o o ¢« o o ¢« o o s« o o « o T.17
Rudder root mean square chord, t . « « « ¢« « o o « & o « « « « 1,43
Tab area, 8@ £ . « ¢ ¢ v & ¢« @ ¢« ¢ ¢t ¢ ¢t v e s e e e e ... 0.91
Rudder travel, deg€ . « . ¢« v & o 4 o « & o = o« « o ¢« « « o« + « « 220
Teb travel as a trim teb, deg . . . e o o s & a « e & & & s o o 10
Tab travel as an antibalance tab, deg . e e e e . . =27.5, +25.8
Pedal movement for full rudder deflection, Ine . ¢ ¢ ¢ o o« . £3.25

Fuselage. .
Lengbh, Tt . . . . & & 4 & v ¢ 4 s o « o o s e v o s s « o« o« ko5

Width, TE o o o o o o & o o o a e a s @ e e e s e e e e s o« 391
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Figure 1.- Three-view drawing of the test airplane.
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Figure 4.- Continued.
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Figure T.- Continued.

(b) V3 = 231 miles per hour; hy, = 10,600 feet; M = 0.37.
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FPigure T7.- Contilnued.

(d) V4 = 394 miles per hour; h, = 9,200 feet; M = 0.61.
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Figure 7.~ Continued.
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Figure 7.~ Continued.
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Figure 13.- Continued.
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Figure 13.- Concluded.
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Figure 1k.- Concluded.
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